Regulators of G-protein signaling (RGS) 4, insertion into model membranes and inhibition of activity by phosphatidic acid.

نویسندگان

  • Ying-Shi Ouyang
  • Yaping Tu
  • Sheryll A Barker
  • Fuyu Yang
چکیده

Regulators of G-protein signaling (RGS) proteins are critical for attenuating G protein-coupled signaling pathways. The membrane association of RGS4 has been reported to be crucial for its regulatory activity in reconstituted vesicles and physiological roles in vivo. In this study, we report that RGS4 initially binds onto the surface of anionic phospholipid vesicles and subsequently inserts into, but not through, the membrane bilayer. Phosphatidic acid, one of anionic phospholipids, could dramatically inhibit the ability of RGS4 to accelerate GTPase activity in vitro. Phosphatidic acid is an effective and potent inhibitor of RGS4 in a G alpha(i1)-[gamma-(32)P]GTP single turnover assay with an IC(50) approximately 4 microm and maximum inhibition of over 90%. Furthermore, phosphatidic acid was the only phospholipid tested that inhibited RGS4 activity in a receptor-mediated, steady-state GTP hydrolysis assay. When phosphatidic acid (10 mol %) was incorporated into m1 acetylcholine receptor-G alpha(q) vesicles, RGS4 GAP activity was markedly inhibited by more than 70% and the EC(50) of RGS4 was increased from 1.5 to 7 nm. Phosphatidic acid also induced a conformational change in the RGS domain of RGS4 measured by acrylamide-quenching experiments. Truncation of the N terminus of RGS4 (residues 1-57) resulted in the loss of both phosphatidic acid binding and lipid-mediated functional inhibition. A single point mutation in RGS4 (Lys(20) to Glu) permitted its binding to phosphatidic acid-containing vesicles but prevented lipid-induced conformational changes in the RGS domain and abolished the inhibition of its GAP activity. We speculate that the activation of phospholipase D or diacylglycerol kinase via G protein-mediated signaling cascades will increase the local concentration of phosphatidic acid, which in turn block RGS4 GAP activity in vivo. Thus, RGS4 may represent a novel effector of phosphatidic acid, and this phospholipid may function as a feedback regulator in G protein-mediated signaling pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous regulators of G protein signaling proteins regulate presynaptic inhibition at rat hippocampal synapses.

Presynaptic inhibition mediated by G protein-coupled receptors (GPCRs) can develop and decay in a few seconds. This time course is too rapid to be accounted for by the intrinsic GTPase activity of Galpha subunits alone. Here, we test the hypothesis that endogenous regulators of G protein signaling (RGS proteins) are required for rapid, brief presynaptic inhibition. Endogenous G protein alpha su...

متن کامل

The regulators of G protein signaling (RGS) domains of RGS4, RGS10, and GAIP retain GTPase activating protein activity in vitro.

Regulators of G protein signaling (RGS) proteins accelerate GTP hydrolysis by Gi but not by Gs class alpha-subunits. All RGS proteins share a conserved 120-amino acid sequence termed the RGS domain. We have demonstrated that the RGS domains of RGS4, RGS10, and GAIP retain GTPase accelerating activity with the Gi class substrates Gialpha1, Goalpha, and Gzalpha in vitro. No regulatory activity of...

متن کامل

Novel Activity of RGS14 on GoR and GiR Nucleotide Binding and Hydrolysis Distinct from Its RGS Domain and GDI Activity†

The bifunctional protein RGS14 is both a GTPase activating protein (GAP) for GiR and GoR and a guanine nucleotide dissociation inhibitor (GDI) for GiR. This GDI activity is isolated to a region of the protein distinct from the RGS domain that contains an additional G protein-binding domain (RBD/ GL). Here, we report that RGS14 missing its RGS domain (R14-RBD/GL) binds directly to Go and Gi to m...

متن کامل

PIP3 inhibition of RGS protein and its reversal by Ca2+/calmodulin mediate voltage-dependent control of the G protein cycle in a cardiac K+ channel.

Regulators of G protein signaling (RGS) accelerate intrinsic GTP hydrolysis on alpha subunits of trimeric G proteins and play crucial roles in the physiological regulation of G protein-mediated cell signaling. The control mechanisms of the action of RGS proteins per se are poorly clarified, however. We recently showed a physiological mode of action of a RGS protein in cardiac myocytes. The volt...

متن کامل

Inhibition of regulator of G protein signaling function by two mutant RGS4 proteins.

Regulators of G protein signaling (RGS) proteins limit the lifetime of activated (GTP-bound) heterotrimeric G protein a subunits by acting as GTPase-activating proteins (GAPs). Mutation of two residues in RGS4, which, based on the crystal structure of RGS4 complexed with G(i alpha1)-GDP-AIF4-, directly contact G(i alpha1) (N88 and L159), essentially abolished RGS4 binding and GAP activity. Muta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 13  شماره 

صفحات  -

تاریخ انتشار 2003